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One of the firmly held concepts in human molecular
genetics has been that, if we can understand the details
of specific genetic mutations and their effects on protein
products, we will be better able to correlate genotype
with phenotype. One of the promises of this concept is
that such a knowledge base will move clinical genetics
into a predictive mode: knowledge of the mutant alleles
responsible for a disease would permit an accurate pre-
diction of the prognosis and a better-informed selection
among therapeutic strategies for any individual patient.
As the mutations have been identified for a series of
diseases, it has become clear that the correlation between
genotype and phenotype is often incomplete. What has
emerged is the recognition that, for many diseases, only
a subset of all mutations reliably predicts phenotype.

We propose that there are two thresholds relating mu-
tant protein function to phenotype: a level below which
the severe phenotype will always be observed and an-
other level above which the phenotype will be uniformly
mild (fig. 1). Between these two thresholds is an inde-
terminate range, in which mutations would not correlate
with phenotype and additional unlinked genes and/or
environmental factors would influence the final pheno-
type. For many diseases, both thresholds may be ob-
served; but, for others, one or both thresholds may not
be seen. For example, there may not be any mutation
with sufficiently low protein function to result uniformly
in the severe phenotype and/or with sufficiently adequate
function to be associated consistently with the mildest
phenotype.

This conceptual construct would suggest at least five
models for a prototypical autosomal recessive bipheno-
typic disorder (fig. 1). The simplest, but extremely rare
(perhaps nonexistent), example would involve a discrete
threshold for protein function, with mutations consis-
tently leading to predictable functional consequences

Received April 14, 2000; accepted for publication April 17, 2000;
electronically published May 1, 2000.

Address for correspondence and reprints: Dr. E. R. B. McCabe,
Department of Pediatrics, UCLA School of Medicine, Los Angeles, CA
90095-1752. E-mail: emccabe@mednet.ucla.edu

© 2000 by The American Society of Human Genetics. All rights reserved.
0002-9297/2000/6606-0002$02.00

above or below the threshold (discrete-threshold model).
The remaining models would be nondiscrete, and each
would have mutations that would be indeterminate and
that would not reliably predict phenotype. In the two-
threshold nondiscrete model, specific alleles might be
associated at all times with either the mild or the severe
phenotype, and other mutant alleles would be indeter-
minate. For the indeterminate mutations, protein func-
tion would be in an intermediate range, in which other
nonallelic genetic variations and/or environmental ef-
fects would influence the in vivo function and therefore
the clinical phenotype. In the single-threshold, severe/
indeterminate nondiscrete model, specific mutations
would be observed that would be associated uniformly
with the severe phenotype, but none would be observed
to correlate consistently with the mild phenotype. The
single-threshold, mild/indeterminate nondiscrete model
would have a group of mutations associated reliably
with protein function resulting in the mild phenotype
and another group that would show no correlation with
phenotype. Finally, for some diseases, no threshold
would be observed, because there would be no corre-
lation between any genotypes and the clinical pheno-
types (no-threshold model). For most “single-gene” dis-
orders, there will be a considerable range of protein
function and a significant number of alleles that will not
correlate absolutely with clinical phenotype, because of
the effects of additional independently inherited genetic
variations and/or environmental influences. For these
“simple” Mendelian disorders, the phenotypes are, in
fact, complex traits.

Gaucher Disease

In this issue, Koprivica et al. (2000) report the genotyp-
ing of DNA from 128 individuals with type 1 (nonneu-
ronopathic) and 24 individuals with type 3 (chronic neu-
ronopathic) Gaucher disease, as well as the identification
of >97% of the mutant alleles. They examined the fre-
quency of mutant alleles among Ashkenazi Jewish and
non-Ashkenazi patients, compared the results with those
of other reports, and attempted to correlate genotype
with phenotype. They concluded that certain mutations
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Figure 1 Threshold models relating mutant-protein function to

phenotype in a biphenotypic disorder. The hatched areas indicate the
severe mutations, the stippled areas indicate the indeterminate mu-
tations, and the white areas indicate the mild mutations. In the discrete-
threshold model, mutations would consistently result in functional
consequences above or below an absolute threshold; in the two-thresh-
old nondiscrete model, specific alleles might be associated consistently
with either the mild or the severe phenotype, whereas others would
be indeterminate with intermediate function influenced by independent
genetic and environmental factors; in the single-threshold nondiscrete
models (severe/indeterminate and mild/indeterminate), mutations
would be associated only with the severe or mild phenotype, respec-
tively, and all other mutations would be indeterminate; and, in the no-
threshold model, no mutations would correlate absolutely with the
phenotype. The levels of the thresholds shown in the figure are arbi-
trary and will vary dramatically between different proteins. A thorough
examination of genotype-phenotype correlations is required before a
disorder can be assigned to a particular model, since limited infor-
mation may lead to misassignment.

appear to predict specific Gaucher disease types. For ex-
ample, N370S as a heterozygous or homozygous allele
has been observed only in individuals with type 1
Gaucher disease, which suggests that sufficient gluco-
cerebrosidase activity is expressed by N370S to “pro-
tect” the individual from neuronopathic disease. Other
mutations, however, did not appear to have reliable ge-
notype-phenotype correlations. For example, the N188S
mutation, elsewhere associated with relatively mild
Gaucher disease and thought to protect against the neu-
ronopathic phenotype (Kim et al. 1996; Choy et al.
1999), was observed in a patient with the more-severe
type 3 disease in the study by Koprivica et al. (2000).
The lack of consistency between the R463C allele and
phenotype was particularly remarkable. R463C homo-
zygosity has been reported in patients with type 1 (Hat-
ton et al. 1997) and type 3 (Gurakan et al. 1999) disease.
In the study by Koprivica et al. (2000), severe or null
alleles observed in patients with type 2 disease were
found in compound heterozygosity with R463C among
patients with type 1 and type 3 disease. The authors of
that report noted that siblings with identical genotypes
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may differ clinically and considered that limitations in
the prediction of phenotype from genotype might be due
to the contribution of additional genes and environ-
mental factors to the individual’s phenotype.

In the discussion that follows, we will consider a small
group of diseases from among many possible examples
in which influences beyond the primary genotype mod-
ify the individual’s phenotype.

Other Biochemical Genetic Disorders

In addition to Gaucher disease, there are many other
inborn errors of metabolism that are inherited in a sim-
ple Mendelian fashion, for which the phenotypes appear
to be inherited as complex traits. One of the first to be
recognized in this category was phenylketonuria (PKU)
(Scriver and Waters 1999). This biochemical disorder is
inherited in an autosomal recessive pattern, and the clas-
sic phenotype includes high blood phenylalanine levels
and mental retardation in the untreated individual. The
patients detected by newborn screening who have clas-
sic PKU require treatment with a phenylalanine-re-
stricted, tyrosine-supplemented diet, whereas patients
with milder hyperphenylalaninemia may not require di-
etary intervention. The isolation of the phenylalanine
hydroxylase (PAH) gene brought hope of predicting the
phenotype and, therefore, of determining the need for
dietary therapy on the basis of genotype. Although some
studies have found a correlation between genotype and
in vitro or in vivo phenotype, not all have confirmed
this relationship (reviewed in Enns et al. 1999). A met-
analysis of 365 patients, who represented 73 different
PAH mutations and 161 genotypes, found that 11 of
the mutations were inconsistent in their in vivo phe-
notypes (Kayaalp et al. 1997). Seven PAH mutations
exhibited discordance between in vitro and in vivo phe-
notypes. A study of patients from seven European cen-
ters evaluated a model for prediction of four phenotypic
categories on the basis of PAH genotype (Guldberg et
al. 1998). The phenotype predicted by the model was
inconsistent with the observed phenotype in 88 (13.5%)
of 650 patients. A study of 133 ethnically diverse pa-
tients showed no correlation between the mutation se-
verity and phenylalanine levels or between genotype and
either pretreatment circulating-phenylalanine concentra-
tions or intelligence (Enns et al. 1999). The authors of
that report cautioned that “prognosis may not be pre-
dicted with precision based on mutation analysis” in an
individual patient (Enns et al. 1999, p. 594). Expression
of PAH missense mutations in mammalian cells showed
that the mutations could affect the enzyme activity, the
levels of phenylalanine hydroxylase protein, both, or nei-
ther (Scriver and Waters 1999). PAH proteins with mis-
sense mutations may have increased susceptibility to
proteolytic degradation, and the levels of phenylalanine
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are dependent on the in vivo steady-state level of the
PAH protein (the balance between the formation and
the degradation of the proteins) and/or the residual ac-
tivity in the mutant protein.

A detailed study of two PAH mutations (one caus-
ing mild disease and one causing a severe phenotype)
showed in vivo activity to be what one would ex-
pect—the mild phenotype had an activity level of 26%
of normal, whereas the severe phenotype had much
lower activity (4.6% of normal) (Waters et al. 1998).
The disparity in activity levels was not due to changes
in the catalytic activity of the phenylalanine hydroxylase
enzyme but to differences in the amount of PAH protein
present. These observations support the hypothesis that,
at least for some mutations, it is the degradation of the
mutant protein in vivo that determines the PAH activity
(Waters et al. 1998). Scriver and Waters (1999) argue
that interindividual differences in the gene products in-
volved in protein stability, such as the chaperones and
proteolytic enzymes, may be responsible for phenotypic
variability among individuals with the identical geno-
type. This concept of selective degradation of mutant
protein has been seen with other enzymes, such as hy-
poxanthine-guanine phosphoribosyltransferase (Capec-
chi et al. 1974).

There are lysosomal storage disorders in addition to
Gaucher disease—namely, o- and §-mannosidase, and
fucosidase deficiencies—that lack a consistent genotype-
phenotype relationship (Michalski and Klein 1999).
These disorders are caused by accumulation of glyco-
proteins that are unable to be properly degraded in the
patients’ lysosomes. Despite the fact that all the patients
with these autosomal recessive disorders have low or
undetectable activity of the respective enzyme, the clin-
ical phenotypes are seen as a continuum, from the se-
vere, infantile type I to the milder, juvenile type II forms.
Other biochemical and environmental factors are
thought to influence the clinical phenotype (Michalski
and Klein 1999). In a-mannosidosis, the patients have
mental retardation, hypotonia, impaired hearing, lens
opacification, macroglossia, and immunodeficiency,
from splice-site, missense, and nonsense mutations. The
most common mutation (R750W) is seen in 21% of the
patients of European descent and is associated with a
range of clinical phenotypes. With fucosidosis, the pa-
tients present with a progressive neurological decline
and with mental retardation. They have growth retar-
dation, coarse faces, infections, angiokeratoma, and dy-
osotosis multiplex, due to nonsense, frameshift, splice-
site, and missense mutations in the FUCAI gene.
Although the missense mutations occurring in the con-
served areas of the protein have a more severe clinical
phenotype, there is a range of phenotypic severity within
the same family (Michalski and Klein 1999). These find-
ings suggest that other genes or exogenous factors are

1731

involved in determining the severity of the clinical
phenotype.

Phenotypic Variability within Families

In addition to the metabolic disorders mentioned above,
there are numerous other examples of genetic disorders
in which the genotype does not correlate with the clinical
phenotype. Among the cardiac diseases, for example,
mutations in the genes KVLQT1, HERQ, SCNSA, and
KCNEI1, which encode the voltage-gated ion channels
that regulate the contraction of the heart, cause the he-
reditary form of long-QT syndrome (Ackerman 1998).
The clinical phenotype varies from a prolonged QT in-
terval, seen only on electrocardiogram, to syncope, sei-
zures, or sudden death. Even within the same family, the
identical mutation is associated with a phenotype that
varies by features such as the age at onset of symptoms
(e.g., 9 vs. 57 years) and the severity of symptoms (Ack-
erman 1998).

Intrafamilial phenotypic variability may also be seen
with mutations in PAX2, a paired-box gene involved
in kidney and eye development. These mutations cause
dominantly inherited optic-nerve colobomas, hearing
loss, vesicoureteral reflux, and renal anomalies (Sany-
anusin et al. 1995). Within one family we can see the
clinical variability imposed on the same frameshift mu-
tation (c.1104delC) (Sanyanusin et al. 1995; Schim-
menti et al. 1995). All affected individuals (the father
and three sons) had optic-nerve colobomas but had var-
ying degrees of renal problems and hearing loss. Two
of the boys had renal failure requiring transplantation
(at ages 5 and 14 years), but the other brother had
milder renal disease, and the father’s renal disease was
so mild that it was undetected until the renal failure
was diagnosed in his children. Only the father and one
son had hearing loss. This variability within one family,
all of whose members had the same mutation, suggests
that additional environmental factors or genes that are
inherited independently of PAX2 are influencing the
clinical phenotype.

This variability may also be observed in the neuro-
genetic disorders, one example being Charcot-Marie-
Tooth disease (CMT). The dominant, type 1 CMT has
been subclassified on the basis of the gene involved:
“CMT1A” for mutations in the peripheral myelin pro-
tein 22 gene (PMP22), “CMT1B” for mutations in the
myelin protein 0 gene (MPZ), and “CMT1X” for mu-
tations in the connexin 32 gene (Cx32) (Haites et al.
1998). However, the genotype does not predict the clin-
ical phenotype, which can be quite variable. Mutations
in the early-growth response 2 gene (ERG2) have been
observed in individuals with the clinical diagnosis of
CMT1, as well as in others with a related but clinically
distinct congenital hypomyelination (CH). Point mu-
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tations in the MPZ gene may cause CMT1, CMT2, CH,
and Dejerine-Sottas syndrome (Haites et al. 1998). In
one study of 116 patients with CMTX and Cx32 mu-
tations, the disease severity was variable. This clinical
variability was noted within families of defined geno-
types, and clinical differences and severity were more
prominent in males than in females (Hahn et al. 1999),
which suggests that other factors are involved in deter-
mining the clinical phenotype. A study of 30 patients
from 19 families with an autosomal recessive neurode-
generative disorder—Wolfram syndrome (optic atrophy
and juvenile-onset diabetes mellitus)—showed no cor-
relation between the severity of the clinical phenotype
and the mutation in the Wolfram syndrome gene
(WES1) (Hardy et al. 1999). In addition, there was var-
iability in the clinical phenotype within some families
with WES1 mutations.

There are also endocrine disorders for which geno-
type may not predict phenotype. In some cases of con-
genital adrenal hyperplasia (CAH) due to 21-hydrox-
ylase deficiency encoded by CYP21, there is a lack of
genotype-phenotype correlation (Carlson et al. 1999).
Fourteen of 26 mutations showed inconsistency in the
relationship between the phenotype predicted from the
genotype and the observed phenotype (Wilson et al.
1995). Some of the patients with the same mutation had
either the classic or the nonclassic form. Of the 13 pa-
tients with the V281L/Del mutation, 11 had nonclassic
CAH, 1 had salt wasting, and 1 had simple virilization
(Wilson et al. 1995; Carlson et al. 1999). Mutations in
SRY, the gene encoding the testis-determining factor, are
associated with disorders of sexual differentiation (Vi-
lain and McCabe 1998). However, the clinical outcome
depends on other factors, as evidenced by a family with
a single-base-pair substitution (588G—C; V196L) that
presents with two distinct clinical phenotypes: three XY
sex-reversed females and two XY males (Vilain et al.
1992). Another striking example is in a family with an
R311H mutation in the c-erbAf gene that encodes the
thyroid-hormone receptor (Geffner et al. 1993). The
proband presented with a severe form of selective pi-
tuitary resistance to thyroid hormone and was hetero-
zygous for the R311H mutation. Her unaffected father
and unaffected half-sister were also heterozygous for
the same mutation. These examples reinforce the con-
cept that other environmental factors or genes inherited
independently are affecting the clinical phenotype in
these endocrine disorders.

Identification of Phenotypic Modifiers

Factors modifying phenotype have been identified in
some cases. One example is a polymorphism that affects
expression of the D178N mutation in the prion protein
gene (PRNP), which causes familial Creutzfeldt-Jakob
(fCJD) disease in some individuals and fatal familial in-
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somnia (FFI) in others (Harder et al. 1999). The phe-
notypic differences among individuals with the D178N
mutation appear to segregate with the 129M/V poly-
morphism: 129M is seen with FFI, and 129V is found
with fC]JD. The molecular basis for this phenotypic mod-
ification in the patients with either FFI or fCJD is thought
to involve different proteinase-resistant prion-protein
isoforms associated with the polymorphism.

Phenotypic modifiers have been identified in other
types of disorders, including the hemoglobinopathies.
Sickle-cell disease is the prototypical hemoglobinopa-
thy, with hemoglobin S the initial hemoglobin variant
to be described (Pauling et al. 1949) and to have its
amino acid mutation reported (Ingram 1956). The phe-
notype of homozygous SS sickle-cell disease is known
to be modified by concomitant expression of hemoglo-
bin F in hereditary persistence of fetal hemoglobin
(HPFH) (Stamatoyannopoulos et al. 1975). HPFH may
be linked to the B-globin gene cluster on chromosome
11p in some families but not in all (Donald et al. 1988;
Thein et al. 1994). The 20-fold variation in hemoglobin
F production among normal individuals and those with
sickle-cell disease is influenced by age, sex, a-globin
gene number, 8-globin haplotype, and the F-cell pro-
duction (FCP) locus that maps to Xp22.2 (Dover et al.
1992; Chang et al. 1995, 1997). In studies of SS subjects
from Jamaica and France, the FCP locus accounted for
40% of the variation in hemoglobin F (Chang et al.
1995, 1997). Another locus that appears to be impor-
tant in controlling the level of fetal hemoglobin ex-
pression maps to 6q (Craig et al. 1996).

For many of the thalassemias, it is also difficult to
predict phenotypes from genotypes (Ho et al. 19984,
1998b; Weatherall 1998). Among those with hemoglo-
bin E/B-thalassemia, the variability in phenotype re-
mains largely unexplained, although there is a corre-
lation between the level of F expression and the total
hemoglobin concentration (Rees et al. 1998). In one
family with hemoglobin E segregating with pyrimidine
5" nucleotidase (PSN) deficiency, homozygous EE dis-
ease, which is normally relatively mild, results in severe
anemia, with PSN deficiency causing hemoglobin insta-
bility (Rees et al. 1998). This example suggests yet an-
other possible genetic-modifier mechanism that might
influence the phenotypes among the hemoglobinopa-
thies.

Modifier Genes in Model Organisms

To better understand how modifier genes influence phe-
notype, it will be important to study the numerous ex-
amples of modifier genes that exist in model organisms.
One prototypical gene that is influenced by a variety of
modifiers is the Drosophila white eye locus involved in
pigment deposition. Modifier of white (MOW) (Bhadra
and Birchler 1996), lightener of white (LOW) (Bhadra
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et al. 1997a), ultra female overexpression (Ufo) (Bhadra
et al. 1997b), and sugarless (sgl) (Benevolenskaya et al.
1998) are recently identified genes that regulate expres-
sion of white. The sgl gene encodes uridine diphosphate
glucose dehydrogenase and is thought to modulate
growth-factor signaling by effects on cell-surface gly-
cosaminoglycans (Benevolenskaya et al. 1998).

Vulval induction in Caenorhabditis elegans provides
examples of modifier genes influencing specific signal-
transduction cascades and modulating large chromo-
somal regions. The ksr-1 (kinase suppressor of ras) gene
encodes a member of the Raf family of serine/threonine
protein kinases that modifies the RAS-mediated signal-
transduction pathway involved in vulval induction
(Sundaram and Han 1995). The tam-1 (tandem-array
modifier) gene appears to influence context-dependent
gene silencing and belongs to the synMuv (synthetic
multivulva phenotype) group of genes, which functions
in the regulation of the RAS pathway (Hsieh et al.
1999).

In yeast there are also many examples of modifier
genes, including those which influence the abundance
of cell-surface enzymes (Na et al. 1995) and complex
subcellular compartmented protein degradation (Ohsu-
mi 1999).

Model organisms demonstrate the wide variety of
modifier genes that influence cellular systems and pre-
sent candidate mechanisms for considerations in mam-
mals. Numerous examples of transgenic and knockout
mice are known in which the phenotypic differences
between strains are obvious. As the catalogue of murine
and human genes becomes complete, candidate mech-
anisms from other model organisms may be extrapo-
lated more efficiently to these mammals.

Thresholds for Protein Function

With the accumulation of detailed information about the
mutations in “single-gene” disorders, geneticists have
observed that the correlation between genotype and phe-
notype is inconsistent. The frequent lack of predictability
in this relationship acknowledges that the primary mu-
tant gene product is embedded within a highly complex
system in which a multiplex of genetic polymorphisms,
additional nonallelic mutations, and environmental in-
fluences represent the differences between individuals.
Perhaps what is more impressive than the inconsistency
between genotypes and phenotypes, given the complex-
ity of the systems, is the observation of the occasional
mutation that does show a reliable correlation with phe-
notype. When such a predictable relationship does exist,
it is usually because the function of the mutant gene
product exceeds a threshold, above which systemic in-
fluences cannot compromise the collective operational
integration or, alternatively, below another threshold,
beneath which the function of the mutant protein can-
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not be raised by other variables within the system. Be-
tween these two thresholds is an indeterminate range
in which the mutant products have a level of residual
function that may be influenced by additional systemic
perturbations, to result in either of the dichotomous
phenotypes.

One example of a disease with an apparent threshold
is the autosomal dominant disorder Marfan syndrome,
in which mutations in the fibrillin 1 gene cause a highly
variable clinical course ranging from isolated ectopia
lentis to aortic-root dilatation or neonatal lethality (Ra-
mirez et al. 1999). All types of mutations are seen in
the fibrillin 1 gene, including missense and nonsense
mutations, deletions, mRNA instability, splice-site
changes, and skipped exons. For most patients, there is
no clear relationship between the mutation and the clin-
ical phenotype, except that mutations in the middle of
the gene tend to be found with the more severe clinical
phenotypes. Recent studies of fibrillin 1-gene targeting
in mice generated two types of mutations—one that had
a large in-frame deletion and decreased expression and
another with decreased expression of normal fibrillin 1.
Selective breeding of the two murine lines provided a
spectrum of phenotypes among the mice that was sim-
ilar to that seen in humans. On the basis of observations
in the mice and humans, the authors of that report
speculated that there is a “critical threshold” of func-
tional microfibrils below which symptoms are observed
(Ramirez et al. 1999, p. 206).

Mutations: Embedded within Complex Systems

The recognition that simple Mendelian traits are, in fact,
complex traits represents a logical extension of concepts
developed by metabolic-control analysis (MCA) (Krauss
and Quant 1996; Brand 1997; Schilling et al. 1999).
MCA has shown that metabolic pathways are not con-
trolled by single rate-limiting steps and that control is
shared among all steps, with more than one step having
significant influence on pathway flux (Krauss and Quant
1996). Regulation occurs at the systems level and is me-
diated by effectors internal or external to the regulated
system (Krauss and Quant 1996; Brand 1997). Because
the activity of the particular steps in the pathway may
be influenced by nonallelic polymorphisms and addi-
tional independent mutations, individuals within the
population will differ in flux through the various steps
in the pathway, imposing an additional magnitude of
genetic complexity on systems that would already be
incredibly intricate, even if individuals were genetically
identical.

The rarity of the true single-gene disorder affirms the
observations from MCA. No single gene product is rate
limiting in any system, and more than one gene product
will influence the activity and regulation of the system.
The organism represents a collection of systems that is
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highly complex because of unique genetic and environ-
mental contributions. Thus, there is considerable op-
portunity for perturbation of the primary mutation’s
influence on the systems composite, which frequently
results in phenotypic differences among individual pa-
tients, even within the same family.
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